

A Performance Measurement Study of the Reliable Internet Stream Transport Protocol

Ciro A. Noronha, Ph.D. Director of Technology, Compression Systems **Cobalt Digital**

- Motivation
- Overview of the Reliable Internet Stream Transport protocol Performance Measurement
- Packet loss performance
 - Packet re-ordering configurations
- Conclusions: how to fine-tune a RIST link Review of multi-company demonstrations

Agenda

- contribution link
- every packet loss is a glitch
- interoperate

COBAT

Motivation

 Advances in compression technology and in network infrastructure have made it possible to use the Internet as a low-cost

• The Internet drops packets, and a recovery protocol is necessary as

• There are many proprietary solutions on the market that do not

 The Video Services Forum (VSF) formed the Reliable Internet Stream Transport (RIST) Activity Group in early 2017 to create a common specification for a protocol suite to solve this problem • RIST Simple Profile was published October 2018

- IP SHOWCASE THEATER AT NAB APRIL 8-11, 2019

- ARQ stands for: Automatic Repeat reQuest - Automatic Repeat Query
- in the face of packet loss - Standard TCP uses a couple of ARQ variants
- Retransmission" (NACK-based)
- RIST uses ARQ

COBAT

• In video transmission, the most useful variant is "Selective - If you don't hear from me, everything is OK - If I miss anything, I let you know and you resend just that

• This is the generic name for a number of retransmission strategies

Packet Recovery using ARQ

Oresets Config

Transmitted packets are saved for possible retransmission

COBALT

ARQ Illustration

Receiver Lost Network **Round-trip**! Delay Lost Network **Round-trip** Delay Presets

- standards
- Packets sent to port P+1
 - packets
 - Suggested content:

CORAL

RIST Protocol Basics (Sender) • Primary stream transmission is through RTP, using the relevant

- SMPTE-2022-1 for Transport Streams - UDP flow sent to port P, where P is an even number • RIST sender is required to transmit RTCP packets - Primary function is to establish state in firewalls for the NACK return

Sender Report (SR) plus CNAME Empty Receiver Report (RR) plus CNAME

- Receiver listens on port P for the content, and on port P+1 for the RTCP packets
- Receiver sends periodic RTCP packets (RR+CNAME) - Receiver RTCP packets are sent to the source IP address and source UDP port of the received RTCP packets - Firewalls will treat these as "response" to the sender RTCP packets
- If the receiver detects packet loss, it will send a retransmission request for the missing packets - Retransmission request is an RTCP packet

RIST Protocol Basics (Receiver)

- compound RTCP packets
- A compound RTCP packet from a RIST receiver will contain RR (may be empty), CNAME, and NACK.
- RIST has defined two types of NACK messages: - Bitmask Message:
 - Can request any pattern within a group of 17 consecutive packets Useful for "salt and pepper" loss Generic NACK from RFC 4585

- Range Message

CORAL

RIST Retransmission Requests RIST NACKs (Retransmission Requests) are built using standard

Can request a block of consecutive packets Implemented with Application-Defined RTCP message RIST AG may approach IANA for a permanent registration

- packet
- Retransmitted packets are sent together with media packets (RTP sent to the same port P)
- Retransmitted packets are differentiated from original packets using the SSRC field - Last bit of SSRC is zero for original packets, one for retransmissions - Identifying retransmissions helps with system stability

RIST Retransmissions • RIST retransmissions are an exact copy of the original missed

No configuration needed

Transmits to IP "R" ports P and P+1

COBAT

the firewall for return RTCP packets

since it is considered "response" to sender **RTCP** packets

Forward ports P and P+1 to Receiver Sent to IP "S", directed at the source port of the RTCP flow **Firewall**

Public IP "R"

Listening on ports P and P+1

Bonding Support RIST Simple Profile has support for Bonding - Sender splits the stream over multiple physical channels - Receiver can send NACKs over each of the paths - Can also be use for redundancy (in the same fashion as SMPTE-2022-7) • Two or more copies of the same stream can be sent over distinct links

Receiver Buffer Retransmission Reassembly Section

> No Recovery After This Point

IP SHOWCASE THEATER AT NAB – APRIL 8-11, 2019

Packet reordering is supported by adding a reorder section to the receiver buffer

Packet Dropping Custom App

Test Automation Custom SNMP

COBALT

SHOWCASE^M Packet Loss **THEATER** Performance Measurement

- •Media bit rate: 8 Mb/s (1920×1080i59.54 source)
- •Simulated round-trip delay: 200 milliseconds
- •Random i.i.d. packet losses:
 - •Single packet losses
 - •5-packet burst losses
- •Two-minute runs
- •Independent variable: number of retries, tested from 1 to 10
- •Receiver retransmission buffer set to (200*R* + 100) milliseconds, where *R* is the number of retries
- •Sender buffer set high enough to handle the worst-case receiver buffer
- •For each retry value, increase the packet loss until at least one unrecovered packet is detected in the two-minute run.
- •Record this packet loss rate
- •Repeat each test 10 times

Single-Loss Results

Maximum Packet Loss for 2-minute Error-Free Run (single losses)

Burst Loss Results

Maximum Packet Loss for 2-minute Error-Free Run (5 packet burst loss)

CURATED BY

- change
 - different (shorter) path
- Trade-offs:

COBALT

Packet Re-Ordering • In the Internet, packet re-ordering only happens when paths

- The only way a packet with "overtake and pass" another is if it uses a

• Question: if not using bonding or multipath intentionally, is it necessary to accommodate packet re-order?

- Non-zero re-order buffer: increased latency - Zero re-order buffer: possibility of unnecessary retransmissions • Question can only be answered with actual data on Internet traffic

- IP SHOWCASE THEATER AT NAB APRIL 8-11, 2019

SHOWCASETM THEATER

	Total Packets	Reordering S	% Reorder
CDN	90 - 905 - 926	28-558	0.031%
Tier-l ISP	39-403-671	307-615	ዐ.781%
Tier-2 ISP	245-535-l6 l	943 ₋ 188	0.384%
OC4	153-143-82 2	653-717	0.427%
Total	528,988,58 0	1-933-078	0.365%

Data derived from:

CORAT

Jaiswalı S., Iannaccone, G., Diot, C., Kurose, J., and Towsley, D., "Measurement and Classification of Out-of-Sequence Packets in a Tier-l IP Backbone", IEEE INFOCOM 2003 San Francisco April 2003.

Data from the Internet

• Internet backbone measurements indicate that the incidence of out-oforder packets is, on average, a fraction of a percent of the traffic.

 In the absence of any additional information, it is unnecessary to set a re-order buffer for a single-link RIST connection over the Internet.

 Input parameters/requirements (site data): Network round-trip time (found with "ping") - Maximum acceptable transport latency (if required) - Network loss (if known) Configurable parameters: - Retransmission Buffer - Re-order Buffer – Number of Retries • Problem: select the values for the configurable parameters from the site data

Configuring a RIST Link

- If there is a latency limit: retries
- If there is no latency limit: the round trip

COBALT

Recommendations

 Set the retransmission buffer to the latency limit - Divide the latency limit by the round trip time and round up to find the number of

- If the network loss is known, read the number of retries from the performance plots and add a margin; set the retransmission buffer to at least the number of retries times

- If the network loss is not known, a good starting point for the number of retries is 4 • Set transmitter buffer size (if configurable) as high as it will go • Re-order can be set to zero unless using bonding - If using bonding, set to at least the worst case differential delay

- time
- Massachusetts)
- source code sharing)

CORAL

IBC 2018 Demo

 8 companies each sent a 5 Mb/s stream over the Internet to the Cobalt headquarters in Champaign, Illinois • The streams were received by Cobalt 9990-DEC decoders, combined in a multiviewer, and published to YouTube in real

 Streams were sent from UK, Canada, Israel, and the US (Northern CA, Southern CA, Florida, Virginia and

Independent implementations from the specification (no

COBALT

Cobalt

00: 08: 22. 02. 1

Receivers and Live Composite Stream Provided by:

USA - CA

Receivers: 9990-DEC-MPEG Location: Champaign, Illinois, USA

LIVE Interop Demo For IBC 2018

QVidium

USA - CA

IP SHOWCASE THEATER AT NAB – APRIL 8-11, 2019

Artel

- February 2019
- receivers at the conference
- receivers at the conference

COBAT

VidTrans 2019 Demo VidTrans 2019 was held in Los Angeles (Marina Del Rey) in • A number of participating companies provided on-site Streams were sent from locations in the world to the

- "Mix and match" of senders and receivers • A camera in the show floor transmitted to a relay in the San Francisco area which bounced it back to the conference - Sub 1-second end-to-end latency

Net Insight to VideoFlow

USA - Massachusetts Government

Sweden

COBALT

Artel to Cobalt

Low Delay Loop to Northern CA

Cobalt to VideoFlow

USA - San Diego

QVidium to Nevion

United Kingdom

The str

REEDOM Nevion to Evertz

VideoFlow to Cobalt

Israe

Israel/France

VideoFlow Bonding

Canada Evertz to Net Insight

Planned for future RIST profiles: Content encryption - VPN support - Support for high bit rate streams Internet contribution

Ongoing RIST Work

 NULL packet suppression (for transport streams) Encoder rate control based on network availability • The objective is to provide all the features required for

COBALT

Thank You

Ciro A. Noronha, Ph.D. **Cobalt Digital** ciro.noronha@cobaltdigital.com +1 650 208-0605

